Computer Architecture —— 分支预测

H&P那本关于分支预测的部分比较简短且表述有点晦涩,(顺便吐槽一下第五版的中文翻译,建议看英文原版)本文主要参考超标量处理器设计,国人写的,用语符合习惯,强烈推荐! Motivation 在处理器中,除了cache之外,另一个重要的内容就是分支预测,它和cache一起左右处理器的性能。以SPECint95作为benchmark,完美的cache和BP(branch-predictor)能使IPC提高两倍左右: 图片来自论文SSMT。当然,这是21世纪之前的结果了。现代处理器分支预测普遍能达到97%~98%以上的精度,在多数浮点benchmark中基本都是99%的准确率。 为什么需要这么高的精度呢? 一般情况下,分支指令的占比通常在 15% 到 30% 之间。对于经典五级流水线无分支预测cpu,一个branch会造成一次stall;而对于现代的superscalar且流水线级数远高于5的(一般是二十级以上)cpu,其misprediction penalty是 $M * N$ 的(M = fetch group内指令数, N = branch resolution latency,就是决定分支最终是否跳转需要多少周期)。如下图所示: 我们再做一个定量实验: 假设我们有一个 $ N = 20 (20\ pipe stages), W = 5 (5\ wide fetch) $ 1 out of 5 instructions is a branch Each 5 instruction-block ends with a branch 的CPU,那么我们取出500条指令需要多少个周期呢? 100% 预测正确率 100 个时钟周期 (all instructions fetched on the correct path) 无额外工作 99% 预测正确率 100 (correct path) + 20 (wrong path) = 120 个时钟周期 20% 额外指令被取出 98% 预测正确率 100 (correct path) + 20 * 2 (wrong path) = 140 个时钟周期 40% 额外指令被取出 95% 预测正确率 100 (correct path) + 20 * 5 (wrong path) = 200 个时钟周期 100% 额外指令被取出 可以看出,分支预测失败在现代的超标量多流水线cpu中的penalty被极大的放大了。所以分支预测的正确性就显得额外重要。 ...

October 17, 2023 · 3 min

C++内存模型 —— 现代Architecture的妥协

介绍 什么是内存模型(Memory Model)呢?这里介绍的内存模型并非C++对象的内存排布模型,而是一个非编程语言层面的概念。我们知道在C++11中,标准引入了 std::atomic<>原子对象,同时还引入了 memory_order_relaxed memory_order_consume memory_order_acquire memory_order_release memory_order_acq_rel memory_order_seq_cst 这六种 memory order。引入可以让我们进行无锁编程,而如果你想要更高性能的程序,你就必须深挖这六种内存模型的含义并正确应用。(当然,在不显式指明memory order的情况下,你能保证获得正确的代码,但存在性能损失) 内存模型 在介绍C++ memory order之前,我们先回答另一个问题。你的计算机执行的程序就是你写的程序吗? —— 显然不是的。 原因也很简单,为了更高效的执行指令,编译器、CPU结构、缓存及其他硬件系统都会对指令进行增删,修改,重排。但要回答具体进行了什么样的修改,又是一个极其复杂的问题。或者说,整个现代体系结构,就是在保证程序正确性的前提下利用各种手段对程序优化。我们可以粗略的将其分成几个部分: source code order: 程序员在源代码中指定的顺序 program code order: 基本上可以看成汇编/机器码的顺序,它可以由编译器优化后得到 execution code order: CPU执行指令顺序也不见得与汇编相同,不同CPU在执行相同机器码时任然存在优化空间。 perceived order/physical order: 最终的执行顺序。即便CPU按照某种确定指令执行,物理时间上的执行顺序仍然可能不同。例如,在超标量CPU中,一次可以fetch and decode多个指令,这些指令之间的物理执行顺序就是不确定的;由于不同层级缓存之间延时不同,以及缓存之间的通信需要等带来的不确定的执行顺序等 上图简要说明了你的源代码可能经历的优化步骤。 这些优化的一个主要原因在于 掩盖memory access操作与CPU执行速度上的巨大鸿沟。如果没有cache,CPU每个访存指令都需要stall一两百个时钟周期,这是不可接受的。但是引入cache的同时又会带来 cache coherence等问题,这也是造成x初始为0,两个线程同时执行 x++,而x最终不一定为 2的元凶。而一个内存模型则对上述并发程序的同一块内存进行了一定的限制,它给出了在并发程序下,任意一组写操作时,可能读到的值。 不同体系结构(x86, arm, power…)通过不同的内存模型来保证程序的正确性。 bonus question: 不同等级的cache latency? answer: l1: 1ns, l2: 5ns, l3: 50~100ns, main memory: 200ns ...

September 1, 2023 · 3 min

Computer Architecture —— 高级缓存技术

本文不会介绍cache的组织形式等基本内容,但也算不上什么"Advanced"。主要包含一些从硬件层面优化cache的手段。 优化cache的几种方法 pipeline caches 上图为教科书上经常出现的cache形式(2-way associative为例),它很精炼的解释了cache的实现。但也稍微引入了些“误导”: 图中v、tag和data部分画在连续的一行上,仿佛硬件上他们就是同一块 SRAM 的不同bit 图中识别tag与data是并行完成的,这很好,某种意义上能降低时延;但我们经常遗忘一个事实,只有读cache的时候我们才能这么操作(或者说在写cache时,读取data block是没有意义的) 对于第一点,在实际的实现当中,tag和data部分都是分开放置的,tag一般是由一种叫CAM(Context-Addressable Memory)的材料构成。当然,这与pi不pipeline没什么关系; 读cache主要就两个部分:比较tag,获取data;我们暂且不考虑以pipeline的方式优化,那么serial的先比较tag再读data一定不如parallel的方式进行吗?当我们并行的读取tag和data的时候,我们会发现,读出来的data有可能没用(没有匹配的tag);并且,在n-way set associate cache中,我们会浪费的读出$n-1$个data项;这给我们什么启示呢?如果我们串行的读cache,那么我们可以在比较tag阶段就知道我们想要的数据在不在cache当中;更有意义的是,根据tag比较的结果,我们就知道哪一路的数据是需要被访问的(提前知道了在n-way中的哪一way),那么我们访问data block时,就无需多路选择器,直接访问指定的way,将其他way的data访问的使能信号置为无效,这种做法的优点在于有效减小功耗。 serial的做法肯定比parallel的延时要大,若这时访问cache处于处理器的critical path(关键路径)上,我们可以再将其进行流水线化。 我们现在再来看看写cache时的情况: 写cache时,只有通过tag比较,确认要写的地址在cache中后,才可以写data SRAM,在主频较高的处理器中,这些操作很难在一个周期内完成,这也要求我们将其流水线化。下图为对cache进行写操作使用的流水线示意图: 在上图的实现方式中,store第一个周期读取Tag并进行比较,根据比较的结果,在第二个周期选择是否将数据写到Data SRAM中。还需要注意的是,当执行load指令时,它想要的数据可能正好在store指令的流水线寄存器中(RAW的情况;上图中的DelayedStoreData寄存器),而不是来自于Data SRAM。因此需要一种机制检测这种情况,这需要将load指令所携带的地址和store指令的流水线寄存器(即DelayedStoreAddr寄存器)进行比较,如果相等,那么就将store指令的数据作为load指令的结果。 由此可以看出,对写D-Cache使用流水线之后,不仅增加了流水线本身的硬件,也带来了其他一些额外的硬件开销。其实。不仅在Cache中有这种现象,在处理器的其他部分增加流水线的级数,也会伴随着其他方面的硬件需求,因此过深的流水线带来的硬件复杂度是非常高的,就像Intel的Pentium 4处理器,并不会从过深的流水线中得到预想的好处。当然,cache的流水线化已经是一种广泛使用的用于降低latency的方法了。 write buffers 我愿称之为buffer of buffer,本来cache就起buffer的作用了,但我们再加一个buffer,如下图所示: 这和多一级的cache有什么不同呢?这是一个专门为写操作设计的buffer(注意:load也可能造成写操作)。原因在于我们知道写通常比读更慢,特别对于write-through来说;其次,当上层cache满后,需要先将dirty cache line写回下层cache,再读取下层cache中的数据。若下层cache只有一个读写端口,那么这种串行的过程导致D-Cache发生缺失的处理时间变得很长,此时就可以采用write buffer来解决这个问题。脏状态的cache-line会首先放到写级存中,等到下级存储器有空闲的时候,才会将写缓存中的数据写到下级存储器中。 对于write buffer,我们还可以对其进行 合并(merging) 操作。所谓merging,指的是将在同一个cache-line上的数据一并写入下层cache中,而非多次写入同一个cache-line。 上图中的右侧表示了一个采用了merging write buffer策略的写缓冲区。 critial word first and early restart 先来看一下cache miss时的cpu: 图中展示了一个blocking cache在cache miss时,cpu stall,而后cache将需要取得的cache-line放入后,cpu resume的timeline。我们可以发现,若我们只需要cache-line中的第3个word,cpu完全可以提早resume。如下图所示: ...

August 23, 2023 · 2 min